Research and Advances
Artificial Intelligence and Machine Learning

Temporal difference learning and TD-Gammon

Posted

Ever since the days of Shannon's proposal for a chess-playing algorithm [12] and Samuel's checkers-learning program [10] the domain of complex board games such as Go, chess, checkers, Othello, and backgammon has been widely regarded as an ideal testing ground for exploring a variety of concepts and approaches in artificial intelligence and machine learning. Such board games offer the challenge of tremendous complexity and sophistication required to play at expert level. At the same time, the problem inputs and performance measures are clear-cut and well defined, and the game environment is readily automated in that it is easy to simulate the board, the rules of legal play, and the rules regarding when the game is over and determining the outcome.

View this article in the ACM Digital Library.

Join the Discussion (0)

Become a Member or Sign In to Post a Comment

The Latest from CACM

Shape the Future of Computing

ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.

Get Involved

Communications of the ACM (CACM) is now a fully Open Access publication.

By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.

Learn More