Research and Advances
Computing Applications

Organizing matrices and matrix operations for paged memory systems

Posted

Matrix representations and operations are examined for the purpose of minimizing the page faulting occurring in a paged memory system. It is shown that carefully designed matrix algorithms can lead to enormous savings in the number of page faults occurring when only a small part of the total matrix can be in main memory at one time. Examination of addition, multiplication, and inversion algorithms shows that a partitioned matrix representation (i.e. one submatrix or partition per page) in most cases induced fewer page faults than a row-by-row representation. The number of page-pulls required by these matrix manipulation algorithms is also studied as a function of the number of pages of main memory available to the algorithm.

View this article in the ACM Digital Library.

Join the Discussion (0)

Become a Member or Sign In to Post a Comment

The Latest from CACM

Shape the Future of Computing

ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.

Get Involved

Communications of the ACM (CACM) is now a fully Open Access publication.

By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.

Learn More