The use of execution time diagnostics in pinpointing ambiguities in decision tables is discussed. It is pointed out that any attempt at resolving ambiguities at compile time will, in general, be impossible. It is shown that, as a consequence, tree methods of converting decision tables to programs are inadequate in regard to ambiguity detection. Two algorithms for programming decision tables whose merits are simplicity of implementation and detection of ambiguities at execution time are presented. The first algorithm is for limited entry decision tables and clarifies the importance of proper coding of the information in the decision table. The second algorithm programs a mixed entry decision table directly without going through the intermediate step of conversion to a limited entry form, thereby resulting in storage economy. A comparison of the algorithms and others proposed in the literature is made. Some features of a decision table to FORTRAN IV translator for the IBM 7044 developed by the authors are given.
The Latest from CACM
Shape the Future of Computing
ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.
Get InvolvedCommunications of the ACM (CACM) is now a fully Open Access publication.
By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.
Learn More
Join the Discussion (0)
Become a Member or Sign In to Post a Comment