Research and Advances
Computing Applications

On the complexity of LR(k) testing

Posted

The problem of determining whether an arbitrary context-free grammar is a member of some easily parsed subclass of grammars such as the LR(k) grammars is considered. The time complexity of this problem is analyzed both when k is considered to be a fixed integer and when k is considered to be a parameter of the test. In the first case, it is shown that for every k there exists an O(nk+2) algorithm for testing the LR(k) property, where n is the size of the grammar in question. On the other hand, if both k and the subject grammar are problem parameters, then the complexity of the problem depends very strongly on the representation chosen for k. More specifically, it is shown that this problem is NP-complete when k is expressed in unary. When k is expressed in binary the problem is complete for nondeterministic exponential time. These results carry over to many other parameterized classes of grammars, such as the LL(k), strong LL(k), SLR(k), LC(k), and strong LC(k) grammars.

View this article in the ACM Digital Library.

Join the Discussion (0)

Become a Member or Sign In to Post a Comment

The Latest from CACM

Shape the Future of Computing

ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.

Get Involved

Communications of the ACM (CACM) is now a fully Open Access publication.

By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.

Learn More