If one has a set of observables (z1, ··· , zm) which are bound in a relation with certain parameters (a1, ··· , an) by an equation &zgr;(z1, ··· , a1, ···) = 0, one frequently has the problem of determining a set of values of the ai which minimizes the sum of squares of differences between observed and calculated values of a distinguished observable, say zm. If the solution of the above equation for zm, zm = &eegr;(z1, ··· ; a1, ···) gives rise to a function &eegr; which is nonlinear in the ai, then one may rely on a version of Gaussian regression [1, 2] for an iteration scheme that converges to a minimizing set of values. It is shown here that this same minimization technique may be used for the solution of simultaneous (not necessarily linear) equations.
The Latest from CACM
Shape the Future of Computing
ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.
Get InvolvedCommunications of the ACM (CACM) is now a fully Open Access publication.
By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.
Learn More
Join the Discussion (0)
Become a Member or Sign In to Post a Comment