We study parallel algorithms for a number of graph problems, using the Single Instruction Stream-Multiple Data Stream model. We assume that the processors have access to a common memory and that no memory or data alignment time penalties are incurred. We derive a general time bound for a parallel algorithm that uses K processors for finding the connected components of an undirected graph. In particular, an O(log2 n) time bound can be achieved using only K = n⌈n/log2 n⌉ processors. This result is optimal in the sense that the speedup ratio is linear with the number of processors used. The algorithm can also be modified to solve a whole class of graph problems with the same time bound and fewer processors than previous parallel methods.
Efficient parallel algorithms for some graph problems
The Latest from CACM
Shape the Future of Computing
ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.
Get InvolvedCommunications of the ACM (CACM) is now a fully Open Access publication.
By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.
Learn More
Join the Discussion (0)
Become a Member or Sign In to Post a Comment