The following problem arose in connection with some studies involving game programming: the representation of any position in the game tree was formed by a sequence of k different integers selected from the first n integers. It was desired to decode any of these representations to a unique memory address such that all such addresses formed a compact group in the memory. Mathematically, the problem was to find a transformation of the representation such that any of the n!/(n - k)! sequences transformed uniquely to one of the set of integers from 0 to [n!/(n - k)! - 1]. A procedure for this is described here.
The Latest from CACM
Shape the Future of Computing
ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.
Get InvolvedCommunications of the ACM (CACM) is now a fully Open Access publication.
By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.
Learn More
Join the Discussion (0)
Become a Member or Sign In to Post a Comment