We propose an algorithm to compute the set of individual (nonnegligible) Poisson probabilities, rigorously bound truncation error, and guarantee no overflow or underflow. Work and space requirements are modest, both proportional to the square root of the Poisson parameter. Our algorithm appears numerically stable. We know no other algorithm with all these (good) features. Our algorithm speeds generation of truncated Poisson variates and the computation of expected terminal reward in continuous-time, uniformizable Markov chains. More generally, our algorithm can be used to evaluate formulas involving Poisson probabilities.
The Latest from CACM
Shape the Future of Computing
ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.
Get InvolvedCommunications of the ACM (CACM) is now a fully Open Access publication.
By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.
Learn More
Join the Discussion (0)
Become a Member or Sign In to Post a Comment