Research and Advances

A recurrence scheme for converting from one orthogonal expansion into another

Posted

A generalization of a scheme of Hamming for converting a polynomial Pn(x) into a Chebyshev series is combined with a recurrence scheme of Clenshaw for summing any finite series whose terms satisfy a three-term recurrence formula. An application to any two orthogonal expansions Pn(x) = ∑nm=0 amqm(x) = ∑nm=0 AmQm(x) enables one to obtain Am directly from am, m = 0(1)n, by a five-term recurrence scheme.

View this article in the ACM Digital Library.

Join the Discussion (0)

Become a Member or Sign In to Post a Comment

The Latest from CACM

Shape the Future of Computing

ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.

Get Involved

Communications of the ACM (CACM) is now a fully Open Access publication.

By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.

Learn More