In this note we consider the relationship between best approximations and best one-sided approximations for three different measures of goodness of fit. For these measures simple relationships exist between best approximations and best one-sided approximations. In particular it is shown that a best approximation and best one-sided approximation differ only by a multiplicative constant when the measure is the uniform norm of the relative error. In this case problems involving best one-sided approximations can be reduced to problems involving best approximations. The result is especially significant if one wants to numerically determine a best one-sided approximation, since algorithms exist for numerically determining best approximations when the measure is the uniform norm of the relative error (see, for example, [1]).
The Latest from CACM
Shape the Future of Computing
ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.
Get InvolvedCommunications of the ACM (CACM) is now a fully Open Access publication.
By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.
Learn More
Join the Discussion (0)
Become a Member or Sign In to Post a Comment