Sign In

Communications of the ACM

News

Electronics Are Leaving the Plane


View as: Print Mobile App ACM Digital Library In the Digital Edition Share: Send by email Share on reddit Share on StumbleUpon Share on Hacker News Share on Tweeter Share on Facebook
multi-layer chip

Credit: Max M. Schulaker et al. / Nature

For decades, integrated circuits have been confined to a veneer on semiconductor chips, with transistors and wiring devices packed ever more densely within this thin sheet. As in-plane shrinkage has become more challenging, however, electronics companies are looking to stack multiple circuit layers vertically to boost speed and functionality, while reducing power consumption and size.

"The performance of a system is not controlled by the individual components, but by the way that you can assemble these different components," said Paolo Gargini, head of the International Roadmap for Devices and Systems, an IEEE Standards Association Industry Connections program that has supplanted the more device-focused semiconductor roadmap. Over time, stacking will give way to true monolithic growth of three-dimensional (3D) chips for some applications, like memory.


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account