Sign In

Communications of the ACM

Last byte

Find Me Quickly

Find Me Quickly, Figure 2

In this cooperative game, two players want to meet each other in a graph as quickly as possible. Meeting each other means both players are at the same node at the same time or traverse an edge in opposite directions in some minute. Each player moves or stays put each minute. A move takes one player from one node across an edge to a neighboring node in the undirected graph.

Warm-up: Suppose the two players are in a graph consisting of a cycle of n nodes (see Figure 1). The nodes are numbered, and each player knows both the topology and the number of the node where he or she is placed. If both players move, say, clockwise, they may never meet. If player A does not move (the "stay-put" strategy) and player B moves in one direction, player B will find player A in n-1 minutes in the worst case. Alternatively, if both agree to move as quickly as possible to some node, say, node 4, and stay there, then the latter of the two will arrive at node 4 in n/2 minutes at most. Is there any other strategy that has a worst-case time complexity of n/2 minutes but also a better average-case time complexity than the go-to-a-common-node strategy?


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account