Sign In

Communications of the ACM

News

Battling Algorithmic Bias


Battling Algorithmic Bias, illustrative photo

Computerized algorithms have become an integral part of everyday life. Algorithms are able to process a far greater range of inputs and variables to make decisions, and can do so with speed and reliability that far exceed human capabilities. From the ads we are served, to the products we are offered, and to the results we are presented with after searching online, algorithms, rather than humans sitting behind the scenes, are making these decisions.

However, because algorithms simply present the results of calculations defined by humans using data that may be provided by humans, machines, or a combination of the two (at some point during the process), they often inadvertently pick up the human biases that are incorporated when the algorithm is programmed, or when humans interact with that algorithm. Moreover, algorithms simply grind out their results, and it is up to humans to review and address how that data is presented to users, to ensure the proper context and application of that data.


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account