July 2008 - Vol. 51 No. 7

July 2008 issue cover image

Features

Research and Advances Research highlights

Anton, A Special-Purpose Machine For Molecular Dynamics Simulation

The ability to perform long, accurate molecular dynamics (MD) simulations involving proteins and other biological macro-molecules could in principle provide answers to some of the most important currently outstanding questions in the fields of biology, chemistry, and medicine. A wide range of biologically interesting phenomena, however, occur over timescales on the order of a millisecond---several orders of magnitude beyond the duration of the longest current MD simulations. We describe a massively parallel machine called Anton, which should be capable of executing millisecond-scale classical MD simulations of such biomolecular systems. The machine, which is scheduled for completion by the end of 2008, is based on 512 identical MD-specific ASICs that interact in a tightly coupled manner using a specialized highspeed communication network. Anton has been designed to use both novel parallel algorithms and special-purpose logic to dramatically accelerate those calculations that dominate the time required for a typical MD simulation. The remainder of the simulation algorithm is executed by a programmable portion of each chip that achieves a substantial degree of parallelism while preserving the flexibility necessary to accommodate anticipated advances in physical models and simulation methods.
Research and Advances Research highlights

The Emergence of a Networking Primitive in Wireless Sensor Networks

The wireless sensor network community approached networking abstractions as an open question, allowing answers to emerge with time and experience. The Trickle algorithm has become a basic mechanism used in numerous protocols and systems. Trickle brings nodes to eventual consistency quickly and efficiently while remaining remarkably robust to variations in network density, topology, and dynamics. Instead of flooding a network with packets, Trickle uses a "polite gossip" policy to control send rates so each node hears just enough packets to stay consistent. This simple mechanism enables Trickle to scale to 1000-fold changes in network density, reach consistency in seconds, and require only a few bytes of state yet impose a maintenance cost of a few sends an hour. Originally designed for disseminating new code, experience has shown Trickle to have much broader applicability, including route maintenance and neighbor discovery. This paper provides an overview of the research challenges wireless sensor networks face, describes the Trickle algorithm, and outlines several ways it is used today.

Recent Issues

  1. July 2024 CACM cover
    July 2024 Vol. 67 No. 7
  2. June 2024 Vol. 67 No. 6
  3. May 2024 CACM cover
    May 2024 Vol. 67 No. 5
  4. April 2024 CACM cover with text
    April 2024 Vol. 67 No. 4