Scheduling independent tasks to reduce mean finishing time
Sequencing to minimize mean finishing time (or mean time in system) is not only desirable to the user, but it also tends to minimize at each point in time the storage required to hold incomplete tasks. In this paper a deterministic model of independent tasks is introduced and new results are derived which extend and generalize the algorithms known for minimizing mean finishing time. In addition to presenting and analyzing new algorithms it is shown that the most general mean-finishing-time problem for independent tasks is polynomial complete, and hence unlikely to admit of a non-enumerative solution.