We provide tight upper and lower bounds, up to a constant factor, for the number of inputs and outputs (I/OS) between internal memory and secondary storage required for five sorting-related problems: sorting, the fast Fourier transform (FFT), permutation networks, permuting, and matrix transposition. The bounds hold both in the worst case and in the average case, and in several situations the constant factors match. Secondary storage is modeled as a magnetic disk capable of transferring P blocks each containing B records in a single time unit; the records in each block must be input from or output to B contiguous locations on the disk. We give two optimal algorithms for the problems, which are variants of merge sorting and distribution sorting. In particular we show for P = 1 that the standard merge sorting algorithm is an optimal external sorting method, up to a constant factor in the number of I/Os. Our sorting algorithms use the same number of I/Os as does the permutation phase of key sorting, except when the internal memory size is extremely small, thus affirming the popular adage that key sorting is not faster. We also give a simpler and more direct derivation of Hong and Kung's lower bound for the FFT for the special case B = P = O(1).
The input/output complexity of sorting and related problems
The Latest from CACM
Shape the Future of Computing
ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.
Get InvolvedCommunications of the ACM (CACM) is now a fully Open Access publication.
By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.
Learn More
Join the Discussion (0)
Become a Member or Sign In to Post a Comment