Research and Advances
Artificial Intelligence and Machine Learning

The use of memory in text processing


The performance of a natural language processing system should improve as it reads more and more texts. This is true both for systems intended as cognitive models and for practical text processing systems. Permanent long-term memory should be useful during all stages of text understanding. For example, if, while reading a patent abstract about a new disk drive, a system can retrieve information about similar objects from memory, processing should be simplified. However, most natural language programs do not exhibit such learning behavior. We describe in this article how RESEARCHER, a program that reads, remembers and generalizes from patent abstracts, makes use of its automatically generated memory to assist in low-level text processing, primarily involving disambiguation that could be accomplished no other way. We describe both RESEARCHER's basic understanding methods and the integration of memory access. Included is an extended example of RESEARCHER processing a patent abstract by using information about several other abstracts already in memory.

View this article in the ACM Digital Library.

Join the Discussion (0)

Become a Member or Sign In to Post a Comment

The Latest from CACM

Shape the Future of Computing

ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.

Get Involved

Communications of the ACM (CACM) is now a fully Open Access publication.

By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.

Learn More