Given an integer N, what is the computational complexity of finding all the primes less than N? A modified sieve of Eratosthenes using doubly linked lists yields an algorithm of OA(N) arithmetic complexity. This upper bound is shown to be equivalent to the theoretical lower bound for sieve methods without preprocessing. Use of preprocessing techniques involving space-time and additive-multiplicative tradeoffs reduces this upper bound to OA(N/log logN) and the bit complexity to OB(N logN log log logN). A storage requirement is described using OB(N logN/log logN) bits as well.
The Latest from CACM
Shape the Future of Computing
ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.
Get InvolvedCommunications of the ACM (CACM) is now a fully Open Access publication.
By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.
Learn More
Join the Discussion (0)
Become a Member or Sign In to Post a Comment