The problem of recovering an image (a function of two variables) from experimentally available integrals of its grayness over thin strips is of great importance in a large number of scientific areas. An important version of the problem in medicine is that of obtaining the exact density distribution within the human body from X-ray projections. One approach that has been taken to solve this problem consists of translating the available information into a system of linear inequalities. The size and the sparsity of the resulting system (typically, 25,000 inequalities with fewer than 1 percent of the coefficients nonzero) makes methods using successive relaxations computationally attractive, as compared to other ways of solving systems of inequalities. In this paper, it is shown that, for a consistent system of linear inequalities, any sequence of relaxation parameters lying strictly between 0 and 2 generates a sequence of vectors which converges to a solution. Under the same assumptions, for a system of linear equations, the relaxation method converges to the minimum norm solution. Previously proposed techniques are shown to be special cases of our procedure with different choices of relaxation parameters. The practical consequences for image reconstruction of the choice of the relaxation parameters are discussed.
Relaxation methods for image reconstruction
The Latest from CACM
Shape the Future of Computing
ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.
Get InvolvedCommunications of the ACM (CACM) is now a fully Open Access publication.
By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.
Learn More
Join the Discussion (0)
Become a Member or Sign In to Post a Comment