Research and Advances
Computing Applications

Optimizing the performance of a relational algebra database interface


An approach for implementing a “smart” interface to support a relational view of data is proposed. The basic idea is to employ automatic programming techniques so that the interface analyzes and efficiently refines the high level query specification supplied by the user. A relational algebra interface, called SQUIRAL, which was designed using this approach, is described in detail. SQUIRAL seeks to minimize query response time and space utilization by: (1) performing global query optimization, (2) exploiting disjoint and pipelined concurrency, (3) coordinating sort orders in temporary relations, (4) employing directory analysis, and (5) maintaining locality in page references. Algorithms for implementing the operators of E. F. Codd's relational algebra are presented, and a methodology for composing them to optimize the performance of a particular user query is described.

View this article in the ACM Digital Library.

Join the Discussion (0)

Become a Member or Sign In to Post a Comment

The Latest from CACM

Shape the Future of Computing

ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.

Get Involved

Communications of the ACM (CACM) is now a fully Open Access publication.

By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.

Learn More