This paper investigates the problem of optimal histogram matching using monotone gray level transformation, which always assigns all picture points of a given gray level i to another gray level T(i) such that if i ≥ j, then T(i) ≥ T(j). The objective is to find a transformed digital picture of a given picture such that the sum of absolute errors between the gray level histogram of the transformed picture and that of a reference picture is minimized. This is equivalent to placing k1 linearly ordered objects of different sizes one by one into k2 linearly ordered boxes of assorted sizes, such that the accumulated error of space underpacked or overpacked in the boxes is minimized; the placement function is monotonic, which ensures a polynomial time solution to this problem. A tree search algorithm for optimal histogram matching is presented which has time complexity O(k1 × k2). If the monotone property is dropped, then the problem becomes NP-complete, even if it is restricted to k2 = 2.
Optimal histogram matching by monotone gray level transformation
The Latest from CACM
Shape the Future of Computing
ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.
Get InvolvedCommunications of the ACM (CACM) is now a fully Open Access publication.
By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.
Learn More
Join the Discussion (0)
Become a Member or Sign In to Post a Comment