A new procedure is presented for calculating the complex, discrete Fourier transform of real-valued time series. This procedure is described for an example where the number of points in the series is an integral power of two. This algorithm preserves the order and symmetry of the Cooley-Tukey fast Fourier transform algorithm while effecting the two-to-one reduction in computation and storage which can be achieved when the series is real. Also discussed are hardware and software implementations of the algorithm which perform only (N/4) log2 (N/2) complex multiply and add operations, and which require only N real storage locations in analyzing each N-point record.
The Latest from CACM
Shape the Future of Computing
ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.
Get InvolvedCommunications of the ACM (CACM) is now a fully Open Access publication.
By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.
Learn More
Join the Discussion (0)
Become a Member or Sign In to Post a Comment