Research and Advances
Artificial Intelligence and Machine Learning

Multidimensional binary search trees used for associative searching

Posted

This paper develops the multidimensional binary search tree (or k-d tree, where k is the dimensionality of the search space) as a data structure for storage of information to be retrieved by associative searches. The k-d tree is defined and examples are given. It is shown to be quite efficient in its storage requirements. A significant advantage of this structure is that a single data structure can handle many types of queries very efficiently. Various utility algorithms are developed; their proven average running times in an n record file are: insertion, O(log n); deletion of the root, O(n(k-1)/k); deletion of a random node, O(log n); and optimization (guarantees logarithmic performance of searches), O(n log n). Search algorithms are given for partial match queries with t keys specified [proven maximum running time of O(n(k-t)/k)] and for nearest neighbor queries [empirically observed average running time of O(log n).] These performances far surpass the best currently known algorithms for these tasks. An algorithm is presented to handle any general intersection query. The main focus of this paper is theoretical. It is felt, however, that k-d trees could be quite useful in many applications, and examples of potential uses are given.

View this article in the ACM Digital Library.

Join the Discussion (0)

Become a Member or Sign In to Post a Comment

The Latest from CACM

Shape the Future of Computing

ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.

Get Involved

Communications of the ACM (CACM) is now a fully Open Access publication.

By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.

Learn More