Dynamic programming has recently been used by Stone, by Bellman and by Gluss to determine the closest fit of broken line segments to a curve in an interval under the constraint that the number of segments is fixed. In the present paper successive models are developed to extend the method to the fitting of broken plane segments to surfaces z = g(x, y) defined over certain types of subareas of the (x, y)-space. The first model considers a rectangular area, with the constraint that the plane segments are defined over a grid in the (x, y)-space. It is then shown how this model may be incorporated into an algorithm that provides successive approximations to optimal fits for any type of closed area. Finally, applications are briefly described.
The Latest from CACM
Shape the Future of Computing
ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.
Get InvolvedCommunications of the ACM (CACM) is now a fully Open Access publication.
By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.
Learn More
Join the Discussion (0)
Become a Member or Sign In to Post a Comment