Research and Advances
Theory

Computing polynomial resultants: Bezout's determinant vs. Collins' reduced P.R.S. algorithm

Posted

Algorithms for computing the resultant of two polynomials in several variables, a key repetitive step of computation in solving systems of polynomial equations by elimination, are studied. Determining the best algorithm for computer implementation depends upon the extent to which extraneous factors are introduced, the extent of propagation of errors caused by truncation of real coeffcients, memory requirements, and computing speed. Preliminary considerations narrow the choice of the best algorithm to Bezout's determinant and Collins' reduced polynomial remainder sequence (p.r.s.) algorithm. Detailed tests performed on sample problems conclusively show that Bezout's determinant is superior in all respects except for univariate polynomials, in which case Collins' reduced p.r.s. algorithm is somewhat faster. In particular Bezout's determinant proves to be strikingly superior in numerical accuracy, displaying excellent stability with regard to round-off errors. Results of tests are reported in detail.

View this article in the ACM Digital Library.

Join the Discussion (0)

Become a Member or Sign In to Post a Comment

The Latest from CACM

Shape the Future of Computing

ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.

Get Involved

Communications of the ACM (CACM) is now a fully Open Access publication.

By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.

Learn More