An iterative technique is displayed whereby factors of arbitrary degree can be found for polynomials in one variable. Convergence is shown to occur always if a certain Jacobian does not vanish and if the initial approximation to a factor is near enough to an actual factor. The process is simply programmed, and preliminary results indicate it to be well adapted to use with digital computers. For factors of degree two, the technique is similar to that of Bairstow, the present method being somewhat simpler.
The Latest from CACM
Shape the Future of Computing
ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.
Get InvolvedCommunications of the ACM (CACM) is now a fully Open Access publication.
By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.
Learn More
Join the Discussion (0)
Become a Member or Sign In to Post a Comment