Research and Advances

Algorithm and bound for the greatest common divisor of n integers


A new version of the Euclidean algorithm for finding the greatest common divisor of n integers ai and multipliers xi such that gcd = x1 a1 + ··· + xn an is presented. The number of arithmetic operations and the number of storage locations are linear in n. A theorem of Lamé that gives a bound for the number of iterations of the Euclidean algorithm for two integers is extended to the case of n integers. An algorithm to construct a minimal set of multipliers is presented. A Fortran program for the algorithm appears as Comm. ACM Algorithm 386.

View this article in the ACM Digital Library.

Join the Discussion (0)

Become a Member or Sign In to Post a Comment

The Latest from CACM

Shape the Future of Computing

ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.

Get Involved

Communications of the ACM (CACM) is now a fully Open Access publication.

By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.

Learn More