Research and Advances
Theory

Algorithm 486: Numerical inversion of Laplace transform [D5]

Posted

This work forms part of a thesis presented in Grenoble in March 1972. Improvements made to the Dubner and Abate algorithm for numerical inversion of the Laplace transform [1] have led to results which compare favorably with theirs and those of Bellmann [2], and Stehfest [3]. The Dubner method leads to the approximation formula: ƒ(t) = 2eat/T[1/2Re{F(a)} + ∑∞k-1 Re{F(a + ik&pgr;/T)}cos(k&pgr;t/T)], (1) where F(s) is the Laplace transform of ƒ(t) and a is positive and greater than the real parts of the singularities of ƒ(t).

View this article in the ACM Digital Library.

Join the Discussion (0)

Become a Member or Sign In to Post a Comment

The Latest from CACM

Shape the Future of Computing

ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.

Get Involved

Communications of the ACM (CACM) is now a fully Open Access publication.

By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.

Learn More