Research and Advances
Artificial Intelligence and Machine Learning

A graph formulation of a school scheduling algorithm

Posted

The problem classically titled “The Examination Schedule Problem” takes various forms in the literature. Most of these formulations can be presented in the terminology of classical Network Theory. One such formulation is: Given a nondirected network, partition its nodes into a minimal number of subsets such that no two members of the same subset are connected by an arc. An obvious lower limit to this number is the size of the largest strongly connected subgraph. Kirchgassner proved that an upper limit is this size plus one. One logical extension of the previous work is the introduction of variable length examinations where W(I) is the number of periods for exam I. The object of this paper is to generalize the definition of largest strongly connected subgraph to include the weighting of nodes, to present an approximate algorithm which usually finds the largest strongly connected subgraph, and to discuss the application of this algorithm to the solution of school scheduling and exam scheduling problems.

View this article in the ACM Digital Library.

Join the Discussion (0)

Become a Member or Sign In to Post a Comment

The Latest from CACM

Shape the Future of Computing

ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.

Get Involved

Communications of the ACM (CACM) is now a fully Open Access publication.

By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.

Learn More