Formalization of a general computer storage allocation process is attempted. With a given computer M is associated a fictitious computer M′ essentially identical to M except in respect to possession of unbounded primary storage. Mappings of the total storage set (internal and external) of M into the direct address set of M′ are introduced. A program sequence P for M′ is termed M-admissible (relative to a specific execution time period) if there is a mapping under which P and its effective data referents are all located in the direct address set of M. Storage allocation is considered as a process of establishing for an arbitrary M′ program a sequence of mappings, a decoupling of the program into M-admissible subprograms and a linking set of interludes. An existence proof in terms of a completely interpretive M program as indicated. Some special cases are discussed. Various restrictions on generality of M′ programs are considered under which more practical realization of allocation processes becomes tractable.
The Latest from CACM
Shape the Future of Computing
ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.
Get InvolvedCommunications of the ACM (CACM) is now a fully Open Access publication.
By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.
Learn More
Join the Discussion (0)
Become a Member or Sign In to Post a Comment