ible graphs is presented. The algorithm is shown to treat a very general class of function spaces. For a graph of e edges, the algorithm has a worst case time bound of O(e log e) function operations. It is also shown that in programming terms, the number of operations is proportional to e plus the number of exits from program loops. Consequently a restriction to one-entry one-exit control structures guarantees linearity. The algorithm can be extended to yet larger classes of function spaces and graphs by relaxing the time bound. Examples are given of code improvement problems which can be solved using the algorithm.
A fast and usually linear algorithm for global flow analysis (abstract only)
The Latest from CACM
Shape the Future of Computing
ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.
Get InvolvedCommunications of the ACM (CACM) is now a fully Open Access publication.
By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.
Learn More
Join the Discussion (0)
Become a Member or Sign In to Post a Comment