acm-header
Sign In

Communications of the ACM

Research highlights

Technical Perspective: The Compression Power of the BWT


white squares collection, illustration

Credit: Getty Images

Massive and highly repetitive text collections are arising in several modern applications. For example, a U.K. project managed in 2018 to sequence 100,000 human genomes, which stored in plain form require 300 terabytes. Further, the data structures needed to efficiently perform the complex searches required in bioinformatics would add another order of magnitude to the storage space, reaching the petabytes.

How to cope with this flood of repetitive data? We can think of compression (after all, two human genomes differ by about 0.1%), but it is not the definitive answer—we need a way to decompress the data before we can use it. A more ambitious research area, compressed data structures, promises to store the data and the structures required to efficiently handle it, within space close to that of the compressed data. The data will never be decompressed; it will always be used directly in compressed form.


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account