Sign In

Communications of the ACM

Contributed articles

Digital Agriculture for Small-Scale Producers: Challenges and Opportunities

smart farming, illustration

Credit: Getty Images

The Food and Agriculture Organization of the United Nations (FAO) reports that, compared to 2010 levels, global food production needs to increase by 70% prior to 2050 to feed the world's growing population, which is expected to reach between 9.4 and 10.2 billion by then.12 We need to achieve this goal in spite of the fact that the amount of arable land is not increasing, diets are changing, water demand is rising, the climate is changing, and both the environment and soil health are under pressure. These problems are most alarming in low-and middle-income countries (LMICs), which are expected to see the highest population increases,19 leading to a growing demand for food and more diversified diets. In many LMICs, most of the population is rural, and more than 70% of farmers are small-scale producers (SSPs).16 As has been seen in more developed nations, economic growth in LMICs can reduce population growth and potentially improve livelihoods. LMICs need an agricultural transformation to help grow their economies, a daunting task made more difficult by such enormous obstacles.

Back to Top

Key Insights


Digital agriculture promises to help address many of these global challenges. Digitization of the food system can enable greater efficiency, transparency, profitability, and equity. The use of digital technology has seen rapid growth and investment, which has spurred many new innovations in Smart Farming.3 These include sensors, Internet of Things (IoT), automation, Blockchain, artificial intelligence (AI), and computer vision. However, most innovation of this kind has been designed for high-income countries (HICs) and large commercial farming systems. Few digital innovations are designed specifically for LMICs and SSPs. Additionally, while digital solutions can potentially improve the lives of millions of rural poor, there are fundamental barriers to adoption. For example, mobile Internet for SSPs is not available to all, with sub-Saharan Africa and South Asia seeing some of the largest gaps.17 In Figure 1, coverage gap represents the population living in areas with no mobile broadband. Usage gap represents people who live in areas with mobile coverage but do not have access, often due to handset or subscription costs, digital skills, literacy, trust, and safety, which are even bigger barriers to adoption amongst women.26 Such barriers must be overcome to realize the potential of digital agriculture for SSPs.


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account