Sign In

Communications of the ACM

Review articles

An Elementary Introduction to Kalman Filtering

noisy data signal, illustration

Credit: Getty Images

Kalman filtering is a state estimation technique used in many application areas such as spacecraft navigation, motion planning in robotics, signal processing, and wireless sensor networks because of its ability to extract useful information from noisy data and its small computational and memory requirements.12,20,27,28,29 Recent work has used Kalman filtering in controllers for computer systems.5,13,14,23

Back to Top

Key Insights


Although many introductions to Kalman filtering are available in the literature,1,2,3,4,6,7,8,9,10,11,17,21,25,29 they are usually focused on particular applications such as robot motion or state estimation in linear systems, making it difficult to see how to apply Kalman filtering to other problems. Other presentations derive Kalman filtering as an application of Bayesian inference, assuming that noise is Gaussian. This leads to the common misconception that Kalman filtering can be applied only if noise is Gaussian.15


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.