Sign In

Communications of the ACM

Research highlights

Technical Perspective: Expressive Probabilistic Models and Scalable Method of Moments

Across diverse fields, investigators face problems and opportunities involving data. Scientists, scholars, engineers, and other analysts seek new methods to ingest data, extract salient patterns, and then use the results for prediction and understanding. These methods come from machine learning (ML), which is quickly becoming core to modern technological systems, modern scientific workflow, and modern approaches to understanding data.

The classical approach to solving a problem with ML follows the "cookbook" approach, one where the scientist shoehorns her data and problem to match the inputs and outputs of a reliable ML method. This strategy has been successful in many domains—examples include spam filtering, speech recognition, and movie recommendation—but it can only take us so far. The cookbook focuses on prediction at the expense of explanation, and thus values generic and flexible methods. In contrast, many modern ML applications require interpretable methods that both form good predictions and suggest good reasons for them. Further, as data becomes more complex and ML problems become more varied, it becomes more difficult to shoehorn our diverse problems into a simple ML set-up.


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.