Sign In

Communications of the ACM

Numerical analysis

Approximate solution of axially symmetric problems

A variety of physical problems in such diverse fields as electrostatic field theory, heat and ideal fluid flow, and stress concentration theory reduce, under the assumption of axial symmetry, to the study of the elliptic partial differential equation ∂2u/∂x2 + ∂2u/∂y2 + k/y(∂u/∂y) = 0. Dirichlet-type problems associated with this equation are studied on regions whose boundaries include a nondegenerate portion of the x-axis and exceedingly accurate numerical methods are given for approximating solutions.

The full text of this article is premium content


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account