Research and Advances

Efficient parallel algorithms for some graph problems

We study parallel algorithms for a number of graph problems, using the Single Instruction Stream-Multiple Data Stream model. We assume that the processors have access to a common memory and that no memory or data alignment time penalties are incurred. We derive a general time bound for a parallel algorithm that uses K processors for finding the connected components of an undirected graph. In particular, an O(log2 n) time bound can be achieved using only K = n⌈n/log2 n⌉ processors. This result is optimal in the sense that the speedup ratio is linear with the number of processors used. The algorithm can also be modified to solve a whole class of graph problems with the same time bound and fewer processors than previous parallel methods.

Advertisement

Author Archives

Shape the Future of Computing

ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.

Get Involved