Research and Advances

Protection and the control of information sharing in multics

The design of mechanisms to control the sharing of information in the Multics system is described. Five design principles help provide insight into the tradeoffs among different possible designs. The key mechanisms described include access control lists, hierarchical control of access specifications, identification and authentication of users, and primary memory protection. The paper ends with a discussion of several known weaknesses in the current protection mechanism design.

Advertisement

Author Archives

Research and Advances

A simple linear model of demand paging performance

Predicting the performance of a proposed automatically managed multilevel memory system requires a model of the patterns by which programs refer to the information stored in the memory. Some recent experimental measurements on the Multics virtual memory suggest that, for rough approximations, a remarkably simple program reference model will suffice. The simple model combines the effect of the information reference pattern with the effect of the automatic management algorithm to produce a single, composite statement: the mean number of memory references between paging exceptions increases linearly with the size of the paging memory. The resulting model is easy to manipulate, and is applicable to such diverse problems as choosing an optimum size for a paging memory, arranging for reproducible memory usage charges, and estimating the amount of core memory sharing.
Research and Advances

A hardware architecture for implementing protection rings

Protection of computations and information is an important aspect of a computer utility. In a system which uses segmentation as a memory addressing scheme, protection can be achieved in part by associating concentric rings of decreasing access privilege with a computation. This paper describes hardware processor mechanisms for implementing these rings of protection. The mechanisms allow cross-ring calls and subsequent returns to occur without trapping to the supervisor. Automatic hardware validation of references across ring boundaries is also performed. Thus, a call by a user procedure to a protected subsystem (including the the supervisor) is identical to a call to a companion user procedure. The mechanisms of passing and referencing arguments are the same in both cases as well.
Research and Advances

The instrumentation of multics

An array of measuring tools devised to aid in the implementation of a prototype computer utility is discussed. These tools include special hardware clocks and data channels, general purpose programmed probing and recording tools, and specialized measurement facilities. Some particular measurements of interest in a system which combines demand paging with multiprogamming are described in detail. Where appropriate, insight into effectiveness (or lack thereof) of individual tools is provided.

Shape the Future of Computing

ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.

Get Involved