Advertisement

Author Archives

Research and Advances

Protection in operating systems

A model of protection mechanisms in computing systems is presented and its appropriateness is argued. The “safety” problem for protection systems under this model is to determine in a given situation whether a subject can acquire a particular right to an object. In restricted cases, it can be shown that this problem is decidable, i.e. there is an algorithm to determine whether a system in a particular configuration is safe. In general, and under surprisingly weak assumptions, it cannot be decided if a situation is safe. Various implications of this fact are discussed.
Research and Advances

On the complexity of LR(k) testing

The problem of determining whether an arbitrary context-free grammar is a member of some easily parsed subclass of grammars such as the LR(k) grammars is considered. The time complexity of this problem is analyzed both when k is considered to be a fixed integer and when k is considered to be a parameter of the test. In the first case, it is shown that for every k there exists an O(nk+2) algorithm for testing the LR(k) property, where n is the size of the grammar in question. On the other hand, if both k and the subject grammar are problem parameters, then the complexity of the problem depends very strongly on the representation chosen for k. More specifically, it is shown that this problem is NP-complete when k is expressed in unary. When k is expressed in binary the problem is complete for nondeterministic exponential time. These results carry over to many other parameterized classes of grammars, such as the LL(k), strong LL(k), SLR(k), LC(k), and strong LC(k) grammars.

Shape the Future of Computing

ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.

Get Involved