Advertisement

Author Archives

Research and Advances

Approximate solution of axially symmetric problems

A variety of physical problems in such diverse fields as electrostatic field theory, heat and ideal fluid flow, and stress concentration theory reduce, under the assumption of axial symmetry, to the study of the elliptic partial differential equation ∂2u/∂x2 + ∂2u/∂y2 + k/y(∂u/∂y) = 0. Dirichlet-type problems associated with this equation are studied on regions whose boundaries include a nondegenerate portion of the x-axis and exceedingly accurate numerical methods are given for approximating solutions.

Shape the Future of Computing

ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.

Get Involved