Research and Advances

A locally adaptive data compression scheme

A data compression scheme that exploits locality of reference, such as occurs when words are used frequently over short intervals and then fall into long periods of disuse, is described. The scheme is based on a simple heuristic for self-organizing sequential search and on variable-length encodings of integers. We prove that it never performs much worse than Huffman coding and can perform substantially better; experiments on real files show that its performance is usually quite close to that of Huffman coding. Our scheme has many implementation advantages: it is simple, allows fast encoding and decoding, and requires only one pass over the data to be compressed (static Huffman coding takes two passes).

Advertisement

Author Archives

Research and Advances

Amortized efficiency of list update and paging rules

In this article we study the amortized efficiency of the “move-to-front” and similar rules for dynamically maintaining a linear list. Under the assumption that accessing the ith element from the front of the list takes &thgr;(i) time, we show that move-to-front is within a constant factor of optimum among a wide class of list maintenance rules. Other natural heuristics, such as the transpose and frequency count rules, do not share this property. We generalize our results to show that move-to-front is within a constant factor of optimum as long as the access cost is a convex function. We also study paging, a setting in which the access cost is not convex. The paging rule corresponding to move-to-front is the “least recently used” (LRU) replacement rule. We analyze the amortized complexity of LRU, showing that its efficiency differs from that of the off-line paging rule (Belady's MIN algorithm) by a factor that depends on the size of fast memory. No on-line paging algorithm has better amortized performance.

Shape the Future of Computing

ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.

Get Involved