This paper explores a technique for proving the correctness and termination of programs simultaneously. This approach, the intermittent-assertion method, involves documenting the program with assertions that must be true at some time when control passes through the corresponding point, but that need not be true every time. The method, introduced by Burstall, promises to provide a valuable complement to the more conventional methods. The intermittent-assertion method is presented with a number of examples of correctness and termination proofs. Some of these proofs are markedly simpler than their conventional counterparts. On the other hand, it is shown that a proof of correctness or termination by any of the conventional techniques can be rephrased directly as a proof using intermittent assertions. Finally, it is shown how the intermittent-assertion method can be applied to prove the validity of program transformations and the correctness of continuously operating programs.
Is “sometime” sometimes better than “always”?: intermittent assertions in proving program correctness
The Latest from CACM
Shape the Future of Computing
ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.
Get InvolvedCommunications of the ACM (CACM) is now a fully Open Access publication.
By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.
Learn More
Join the Discussion (0)
Become a Member or Sign In to Post a Comment