The Warren abstract machine (WAM) has become a generally accepted standard Prolog implementation technique. Garbage collection is an important aspect in the implementation of any Prolog system. A synopsis of the WAM is presented and then marking and compaction algorithms are shown that take advantage of WAM's unique use of the data areas. Marking and compaction are performed on both the heap and the trail; both use pointer reversal techniques, which obviate the need for extra stack space. However, two bits for every pointer on the heap are reserved for the garbage collection algorithm. The algorithm can work on segments of the heap, which may lead to a significant reduction of the total garbage collection time. The time of the algorithms are linear in the size of the areas.
The Latest from CACM
Shape the Future of Computing
ACM encourages its members to take a direct hand in shaping the future of the association. There are more ways than ever to get involved.
Get InvolvedCommunications of the ACM (CACM) is now a fully Open Access publication.
By opening CACM to the world, we hope to increase engagement among the broader computer science community and encourage non-members to discover the rich resources ACM has to offer.
Learn More
Join the Discussion (0)
Become a Member or Sign In to Post a Comment