Sign In

Communications of the ACM

Last byte

Playing With, and Against, Computers

2019 ACM Computing Prize recipient David Silver

Games have long been a fertile testing ground for the artificial intelligence community, and not just because of their accessibility to the popular imagination. Games also enable researchers to simulate different models of human intelligence, and to quantify performance. No surprise, then, that the 2016 victory of DeepMind's AlphaGo algorithm—developed by 2019 ACM Computing Prize recipient David Silver, who leads the company's Reinforcement Learning Research Group—over world Go champion Lee Sedol generated excitement both within and outside of the computing community. As it turned out, that victory was only the beginning; subsequent iterations of the algorithm have been able to learn without any human data or prior knowledge except the rules of the game and, eventually, without even knowing the rules. Here, Silver talks about how the work evolved and what it means for the future of general-purpose AI.

You grew up playing games like chess and Scrabble. What drew you to Go?


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.