When we send encrypted information over a public communication channel, our security models must assume adversaries are recording that information in the hopes of being able to eventually break the encryption and exploit the underlying plaintext. An encryption algorithm believed to be secure today could cease to be in the future due to new advances in number theory, new cryptanalytic techniques, or even new methods of computing. It is this last risk, in particular the risk posed by the potential future development of large-scale, fault-tolerant quantum computers, that is currently the focus of much of the international cryptographic research community, driven by a worldwide open competition to select and standardize new post-quantum (a.k.a. quantum-resistant) public-key cryptographic algorithms. As we approach the first output milestone in that competition, it is critical for everyone in our industry to be aware of the coming algorithm transition, the impact it will have on existing and future systems, and the research and engineering work still needed to make the transition to post-quantum cryptography (PQC) possible.
From mobile communications to online banking to personal data privacy, literally billions of Internet users rely on cryptography every day to ensure private communications and data stay private. Indeed, the emergence and growth of the public Internet and electronic commerce was arguably enabled by the invention of public-key cryptography. The critical advantage offered by public-key cryptography is that it allows two parties who have never communicated previously to nevertheless establish a secure, private, communication channel over a non-private network (that is, the Internet). Public-key cryptography is also the technology that enables digital signatures, which are widely used to protect software and application updates, online contracts, and electronic identity credentials.
No entries found