acm-header
Sign In

Communications of the ACM

Viewpoint

The Limits of Differential Privacy (and Its Misuse in Data Release and Machine Learning)


key in safety deposit box

Credit: Andrij Borys Associates, Shutterstock

The traditional approach to statistical disclosure control (SDC) for privacy protection is utility-first. Since the 1970s, national statistical institutes have been using anonymization methods with heuristic parameter choice and suitable utility preservation properties to protect data before release. Their goal is to publish analytically useful data that cannot be linked to specific respondents or leak confidential information on them.

In the late 1990s, the computer science community took another angle and proposed privacy-first data protection. In this approach a privacy model specifying an ex ante privacy condition is enforced using one or several SDC methods, such as noise addition, generalization, or microaggregation. The parameters of the SDC methods depend on the privacy model parameters, and too strict a choice of the latter may result in poor utility. The first widely accepted privacy model was k-anonymity, whereas differential privacy (DP) is the model that currently attracts the most attention.


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account