Sign In

Communications of the ACM

ACM News

Supercomputer Helps Protect Earth From Space Storms

View as: Print Mobile App Share:
The Earth is at the center of the black circle that is the inner boundary at 2.5 Earth radii. The white lines are magnetic field lines. The colors show density. The blue rectangle indicates where the kinetic model is used, which is coupled with the global

Improving the lead time of space weather forecasts requires new methods and algorithms that can compute far faster than those used today and may be deployed on high-performance computers.

Credit: Yuxi Chen et al

"There are only two natural disasters that could impact the entire U.S.," according to Gabor Toth, professor of Climate and Space Sciences and Engineering at the University of Michigan. "One is a pandemic and the other is an extreme space weather event."

We're currently seeing the effects of the first in real-time.

The last major space weather event struck the Earth in 1859. Smaller, but still significant, space weather events occur regularly. These fry electronics and power grids, disrupt global positioning systems, cause shifts in the range of the Aurora Borealis, and raise the risk of radiation to astronauts or passengers on planes crossing over the poles.

"We have all these technological assets that are at risk," Toth said. "If an extreme event like the one in 1859 happened again, it would completely destroy the power grid and satellite and communications systems — the stakes are much higher."

Motivated by the White House National Space Weather Strategy and Action Plan and the National Strategic Computing Initiative, in 2020 the National Science Foundation (NSF) and NASA created the Space Weather with Quantified Uncertainties (SWQU) program. It brings together research teams from across scientific disciplines to advance the latest statistical analysis and high performance computing methods within the field of space weather modeling

From Leak Herald
View Full Article



No entries found