Sign In

Communications of the ACM

ACM News

Memristor Breakthrough: First Single Device To Act Like a Neuron


View as: Print Mobile App Share: Send by email Share on reddit Share on StumbleUpon Share on Hacker News Share on Tweeter Share on Facebook
Illustrating a cross-section of the new memristor.

Researchers have invented a device that can act like a neuron.

Credit: Research Group of R. Stanley Williams

One thing that's kept engineers from copying the brain's power efficiency and quirky computational skill is the lack of an electronic device that can, all on its own, act like a neuron. It would take a special kind of device to do that, one whose behavior is more complex than any yet created.

Suhas Kumar of Hewlett Packard Laboratories, R. Stanley Williams now at Texas A&M, and the late Stanford student Ziwen Wang have invented a device that meets those requirements. On its own, using a simple DC voltage as the input, the device outputs not just simple spikes, as some other devices can manage, but the whole array of neural activity—bursts of spikes, self-sustained oscillations, and other stuff that goes on in your brain. They described the device last week in Nature.

It combines resistance, capacitance, and what's called a Mott memristor all in the same device. Memristors are devices that hold a memory, in the form of resistance, of the current that has flowed through them. Mott memristors have an added ability in that they can also reflect a temperature-driven change in resistance. Materials in a Mott transition go between insulating and conducting according to their temperature. It's a property seen since the 1960s, but only recently explored in nanoscale devices.

 

From IEEE Spectrum
View Full Article

 


 

No entries found