Sign In

Communications of the ACM

ACM News

NSF Announces Quantum Algorithm Challenge, Invites Idea Submissions


View as: Print Mobile App Share: Send by email Share on reddit Share on StumbleUpon Share on Hacker News Share on Tweeter Share on Facebook
The logo of the U.S. National Science Foundation.

The National Science Foundation has announced the details of its Quantum Algorithm Challenge.

Credit: National Science Foundation

This National Science Foundation Dear Colleague Letter (DCL) published yesterday (March 10), details the NSF's Quantum Algorithm Challenge, which aims to develop quantum algorithms with the end goal to expand the applications of quantum computing. Research Concept Outlines (RCOs) are sought over several topic areas; they are due by April 15, 2020.

As the age of Moore's law draws to a close, there has been increased interest in new types of computational platforms. Quantum computing in particular has recently seen rapid advances in terms of hardware capabilities, algorithm development, and the availability of software. One of the earliest and most compelling applications for quantum computers, as envisioned by Richard Feynman, is the idea of simulating quantum systems with many degrees of freedom, such as molecules and materials, which is intractable on ordinary classical computers. This and more recently conceived applications of quantum computation related to encryption, search, approximation, optimization, and machine learning promise to have enormous impact in science and technology. With this Dear Colleague Letter (DCL), the National Science Foundation (NSF) aims to challenge the fundamental research community to develop innovative quantum algorithms for many- body systems, develop novel algorithms that expand the applications of quantum computation, or propose new quantum-computing paradigms.

Because quantum computing is very different from classical computing, the best way to obtain a quantum advantage is often quite subtle. It takes creativity and innovation to develop the algorithms required to solve practical problems via quantum computation. Although much progress has been made, there are many open questions and obstacles to overcome before the power of quantum computing can be fully harnessed for application in chemistry, physics, materials science, mathematics, statistics, and computer science.

The National Science Foundation has recently sponsored several workshops that are relevant to this DCL: Mathematical Sciences Challenges in Quantum Information, Enabling the Quantum Leap: Quantum Algorithms for Quantum Chemistry and Materials, and Quantum Simulators: Architectures and Opportunities3. These workshops are aligned with the NSF Quantum Leap Big Idea, which aims to exploit quantum mechanical concepts such as superposition and entanglement to develop next-generation technologies for sensing, computing, modeling, and communication.

HPC Wire
View Full Article


 

No entries found