Sign In

Communications of the ACM

ACM News

How Random Is Your Randomness, and Why Does It Matter?

View as: Print Mobile App Share: Send by email Share on reddit Share on StumbleUpon Share on Hacker News Share on Tweeter Share on Facebook
What if the person flipping the coin cheats?

Randomness is powerful.


Randomness is powerful. Think about a presidential poll: A random sample of just 400 people in the United States can accurately estimate Clinton’s and Trump’s support to within 5 percent (with 95 percent certainty), despite the U.S. population exceeding 300 million. That’s just one of many uses.

Randomness is vital for computer security, making possible secure encryption that allows people to communicate secretly even if an adversary sees all coded messages. Surprisingly, it even allows security to be maintained if the adversary also knows the key used to the encode the messages.

Often random numbers can be used to speed up algorithms. For example, the fastest way we know to test whether a particular number is prime involves choosing random numbers. That can be helpful in math, computer science and cryptography, among other disciplines.

Random numbers are also crucial to simulating very complex systems. When dealing with the climate or the economy, for example, so many factors interact in so many ways that the equations involve millions of variables. Today’s computers are not powerful enough to handle all these unknowns. Modeling this complexity with random numbers simplifies the calculations, and still results in accurate simulations.

From The Conversation
View Full Article



No entries found